Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 12(4)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37111426

RESUMO

The current control of gastrointestinal (GI) parasitic nematodes mainly relies on the widespread use of anthelmintics, which has inevitably led to resistance. Therefore, there is an urgent need to find new sources of antiparasitic compounds. Macroalgae represent a rich source of active molecules and are widely described as having medicinal properties. In the present study, we investigated the potential anthelmintic activity of aqueous extracts from three species of algae (Bifurcaria bifurcata, Grateloupia turuturu and Osmundea pinnatifida) on the murine parasite Heligmosomoides polygyrus bakeri. Using a set of complementary in vitro tests, including larval development assays, egg hatching tests and nematicidal activity assays on larvae and adults, we report the nematicidal activity of aqueous extracts of B. bifurcata. In addition, aqueous extract fractionation using liquid/liquid partitioning with a solvent of increasing polarity was performed in order to identify the groups of active molecules underlying the anthelmintic activity. Non-polar extracts (heptane, ethyl acetate) demonstrated high anthelmintic potential, highlighting the role of non-polar metabolites such as terpenes. Here, we highlight the strong anthelmintic potential of the brown alga B. bifurcata on a mouse model of GI parasites, thus confirming the strong interest in algae as natural alternatives for the control of parasitic nematodes.

2.
Toxins (Basel) ; 14(12)2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36548725

RESUMO

Alteration of sphingolipid synthesis is a key event in fumonisins toxicity, but only limited data have been reported regarding the effects of fumonisins on the sphingolipidome. Recent studies in chickens found that the changes in sphingolipids in liver, kidney, lung, and brain differed greatly. This study aimed to determine the effects of fumonisins on sphingolipids in heart, gizzard, and breast muscle in chickens fed 20.8 mg FB1 + FB2/kg for 9 days. A significant increase in the sphinganine:sphingosine ratio due to an increase in sphinganine was observed in heart and gizzard. Dihydroceramides and ceramides increased in the hearts of chickens fed fumonisins, but decreased in the gizzard. The dihydrosphingomyelin, sphingomyelin, and glycosylceramide concentrations paralleled those of ceramides, although the effects were less pronounced. In the heart, sphingolipids with fatty acid chain lengths of 20 to 26 carbons were more affected than those with 14-16 carbons; this difference was not observed in the gizzard. Partial least squares-discriminant analysis on sphingolipids in the heart allowed chickens to be divided into two distinct groups according to their diet. The same was the case for the gizzard. Pearson coefficients of correlation among all the sphingolipids assayed revealed strong positive correlations in the hearts of chickens fed fumonisins compared to chickens fed a control diet, as well as compared to gizzard, irrespective of the diet fed. By contrast, no effect of fumonisins was observed on sphingolipids in breast muscle.


Assuntos
Fumonisinas , Micotoxinas , Animais , Esfingolipídeos , Fumonisinas/toxicidade , Galinhas , Micotoxinas/farmacologia , Moela das Aves , Esfingosina , Ceramidas/farmacologia , Fígado , Músculos
3.
Food Chem Toxicol ; 170: 113467, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36241089

RESUMO

Most of the toxic effects of fumonisins can be related to sphingolipid alteration, but there is little sphingolipidomic data in animals fed fumonisins in organs other than the liver. This study aimed to measure fumonisin B1 (FB1) in kidney, lung, and brain and determine its effects on sphingolipids. Thirty chickens divided into three groups received a diet containing 20.8 mg FB1+FB2/kg for 0, 4, or 9 days. FB1 increased in kidney from 1.7 to 5.6 nmol/kg and in lung from 0.5 to 1 nmol/kg at 4 and 9 days, respectively. No FB1 was detected in brain. In kidney, sphinganine increased, C14-C16 ceramides decreased, whereas C18-C26 ceramides increased. Most of the changes in dihydroceramides, dihydrodeoxyceramides, deoxyceramides sphingomyelins, dihydrosphingomyelins, and hexosylceramides paralleled those on ceramides. In lung, sphinganine was unaffected by fumonisins, whereas sphinganine-1-phosphate increased. Other major changes corresponded to decreases in glycosylceramides. In brain, sphinganine was unchanged, whereas deoxysphinganine, sphingosine, C14-C20 ceramides, and C14-C20 sphingomyelins increased. These results revealed that alterations in sphingolipids in kidney were close to those measured in liver and could correspond to inhibition of ceramide synthase 5 activity. In contrast, effects of fumonisins in lung and brain cannot be explained by inhibition of ceramide synthase.


Assuntos
Fumonisinas , Micotoxinas , Animais , Fumonisinas/toxicidade , Esfingolipídeos/farmacologia , Galinhas , Esfingomielinas/farmacologia , Ceramidas , Esfingosina/farmacologia , Rim , Fígado , Pulmão , Encéfalo , Micotoxinas/farmacologia
4.
Toxins (Basel) ; 13(11)2021 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-34822554

RESUMO

Fumonisins (FB) are mycotoxins known to exert most of their toxicity by blocking ceramide synthase, resulting in disruption of sphingolipid metabolism. Although the effects of FB on sphinganine (Sa) and sphingosine (So) are well documented in poultry, little information is available on their other effects on sphingolipids. The objective of this study was to analyze the effects of FB on the hepatic and plasma sphingolipidome in chickens. The first concern of this analysis was to clarify the effects of FB on hepatic sphingolipid levels, whose variations can lead to numerous toxic manifestations. The second was to specify the possible use of an alteration of the sphingolipidome as a biomarker of exposure to FB, in addition to the measurement of the Sa:So ratio already widely used. For this purpose, we developed an UHPLC MS/MS method that enabled the determination of 82 SL, including 10 internal standards, in chicken liver and plasma. The validated method was used to measure the effects of FB administered to chickens at a dose close to 20 mg FB1 + FB2/kg feed for 9 days. Significant alterations of sphingoid bases, ceramides, dihydroceramides, glycosylceramides, sphingomyelins and dihydrosphingomyelins were observed in the liver. In addition, significant increases in plasma sphinganine 1-phosphate, sphingosine 1-phosphate and sphingomyelins were observed in plasma. Interestingly, partial least-squares discriminant analysis of 11 SL in plasma made it possible to discriminate exposed chickens from control chickens, whereas analysis of Sa and So alone revealed no difference. In conclusion, our results show that the effects of FB in chickens are complex, and that SL profiling enables the detection of exposure to FB when Sa and So fail.


Assuntos
Galinhas/metabolismo , Fumonisinas/administração & dosagem , Venenos/administração & dosagem , Esfingolipídeos/metabolismo , Animais , Relação Dose-Resposta a Droga , Lipidômica
5.
Toxins (Basel) ; 13(10)2021 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-34678994

RESUMO

The toxicokinetics of the food and feed contaminant Fumonisin B (FB) are characterized by low oral absorption and rapid plasma elimination. For these reasons, FB is not considered to accumulate in animals. However, recent studies in chicken and turkey showed that, in these species, the hepatic half-elimination time of fumonisin B1 (FB1) was several days, suggesting that FB1 may accumulate in the body. For the present study, 21-day-old chickens received a non-toxic dose of around 20 mg FB1 + FB2/kg of feed to investigate whether FB can accumulate in the body over time. Measurements taken after four and nine days of exposure revealed increased concentrations of sphinganine (Sa) and sphingosine (So) over time in the liver, but no sign of toxicity and no effect on performances were observed at this level of FB in feed. Measurements of FB in tissues showed that FB1 accumulated in chicken livers from four to nine days, with concentrations of 20.3 and 32.1 ng FB1/g observed, respectively, at these two exposure periods. Fumonisin B2 (FB2) also accumulated in the liver, from 0.79 ng/g at four days to 1.38 ng/g at nine days. Although the concentrations of FB found in the muscles was very low, an accumulation of FB1 over time was observed in this tissue, with concentrations of 0.036 and 0.072 ng FB1/g being measured after four and nine days of exposure, respectively. Feeding algo-clay to the chickens reduced the accumulation of FB1 in the liver and muscle by , approximately 40 and 50% on day nine, respectively. By contrast, only a weak non-significant effect was observed on day four. The decrease in the concentration of FB observed in tissues of chickens fed FB plus algo-clay on day nine was accompanied by a decrease in Sa and So contents in the liver compared to the levels of Sa and So measured in chickens fed FB alone. FB1 in the liver and Sa or So contents were correlated in liver tissue, confirming that both FB1 and Sa are suitable biomarkers of FB exposure in chickens. Further studies are necessary to determine whether FB can accumulate at higher levels in chicken tissues with an increase in the time of exposure and in the age of the animals.


Assuntos
Galinhas/metabolismo , Argila , Fumonisinas/metabolismo , Fígado/metabolismo , Músculo Esquelético/metabolismo , Ração Animal/análise , Animais , Fígado/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Fatores de Tempo , Distribuição Tecidual
6.
Front Microbiol ; 9: 2740, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524390

RESUMO

About half of seaweed biomass is composed of polysaccharides. Most of these complex polymers have a marked polyanionic character. For instance, the red algal cell wall is mainly composed of sulfated galactans, agars and carrageenans, while brown algae contain alginate and fucose-containing sulfated polysaccharides (FCSP) as cell wall polysaccharides. Some marine heterotrophic bacteria have developed abilities to grow on such macroalgal polysaccharides. This is the case of Pseudoalteromonas carrageenovora 9T (ATCC 43555T), a marine gammaproteobacterium isolated in 1955 and which was an early model organism for studying carrageenan catabolism. We present here the genomic analysis of P. carrageenovora. Its genome is composed of two chromosomes and of a large plasmid encompassing 109 protein-coding genes. P. carrageenovora possesses a diverse repertoire of carbohydrate-active enzymes (CAZymes), notably specific for the degradation of macroalgal polysaccharides (laminarin, alginate, FCSP, carrageenans). We confirm these predicted capacities by screening the growth of P. carrageenovora with a large collection of carbohydrates. Most of these CAZyme genes constitute clusters located either in the large chromosome or in the small one. Unexpectedly, all the carrageenan catabolism-related genes are found in the plasmid, suggesting that P. carrageenovora acquired its hallmark capacity for carrageenan degradation by horizontal gene transfer (HGT). Whereas P. carrageenovora is able to use lambda-carrageenan as a sole carbon source, genomic and physiological analyses demonstrate that its catabolic pathway for kappa- and iota-carrageenan is incomplete. This is due to the absence of the recently discovered 3,6-anhydro-D-galactosidase genes (GH127 and GH129 families). A genomic comparison with 52 Pseudoalteromonas strains confirms that carrageenan catabolism has been recently acquired only in a few species. Even though the loci for cellulose biosynthesis and alginate utilization are located on the chromosomes, they were also horizontally acquired. However, these HGTs occurred earlier in the evolution of the Pseudoalteromonas genus, the cellulose- and alginate-related loci being essentially present in one large, late-diverging clade (LDC). Altogether, the capacities to degrade cell wall polysaccharides from macroalgae are not ancestral in the Pseudoalteromonas genus. Such catabolism in P. carrageenovora resulted from a succession of HGTs, likely allowing an adaptation to the life on the macroalgal surface.

7.
Sci Rep ; 8(1): 2500, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29410423

RESUMO

Marine algae are one of the largest sources of carbon on the planet. The microbial degradation of algal polysaccharides to their constitutive sugars is a cornerstone in the global carbon cycle in oceans. Marine polysaccharides are highly complex and heterogeneous, and poorly understood. This is also true for marine microbial proteins that specifically degrade these substrates and when characterized, they are frequently ascribed to new protein families. Marine (meta)genomic datasets contain large numbers of genes with functions putatively assigned to carbohydrate processing, but for which empirical biochemical activity is lacking. There is a paucity of knowledge on both sides of this protein/carbohydrate relationship. Addressing this 'double blind' problem requires high throughput strategies that allow large scale screening of protein activities, and polysaccharide occurrence. Glycan microarrays, in particular the Comprehensive Microarray Polymer Profiling (CoMPP) method, are powerful in screening large collections of glycans and we described the integration of this technology to a medium throughput protein expression system focused on marine genes. This methodology (Double Blind CoMPP or DB-CoMPP) enables us to characterize novel polysaccharide-binding proteins and to relate their ligands to algal clades. This data further indicate the potential of the DB-CoMPP technique to accommodate samples of all biological sources.


Assuntos
Análise em Microsséries/métodos , Plantas/química , Polissacarídeos/análise , Receptores de Superfície Celular/análise , Organismos Aquáticos/química , Clorófitas/química , Escherichia coli , Glicômica/métodos , Rodófitas/química
8.
Nat Commun ; 8(1): 1685, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29162826

RESUMO

Macroalgae contribute substantially to primary production in coastal ecosystems. Their biomass, mainly consisting of polysaccharides, is cycled into the environment by marine heterotrophic bacteria using largely uncharacterized mechanisms. Here we describe the complete catabolic pathway for carrageenans, major cell wall polysaccharides of red macroalgae, in the marine heterotrophic bacterium Zobellia galactanivorans. Carrageenan catabolism relies on a multifaceted carrageenan-induced regulon, including a non-canonical polysaccharide utilization locus (PUL) and genes distal to the PUL, including a susCD-like pair. The carrageenan utilization system is well conserved in marine Bacteroidetes but modified in other phyla of marine heterotrophic bacteria. The core system is completed by additional functions that might be assumed by non-orthologous genes in different species. This complex genetic structure may be the result of multiple evolutionary events including gene duplications and horizontal gene transfers. These results allow for an extension on the definition of bacterial PUL-mediated polysaccharide digestion.


Assuntos
Carragenina/metabolismo , Flavobacteriaceae/genética , Flavobacteriaceae/metabolismo , Regulon , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteroidetes/genética , Bacteroidetes/metabolismo , Cristalografia por Raios X , Evolução Molecular , Galactosidases/química , Galactosidases/genética , Galactosidases/metabolismo , Genes Bacterianos , Redes e Vias Metabólicas/genética , Modelos Moleculares , Família Multigênica , Filogenia , Conformação Proteica , RNA Bacteriano/genética , Análise de Sequência de RNA , Especificidade da Espécie
9.
J Biol Chem ; 292(48): 19919-19934, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29030427

RESUMO

Carrageenans are sulfated α-1,3-ß-1,4-galactans found in the cell wall of some red algae that are practically valuable for their gelation and biomimetic properties but also serve as a potential carbon source for marine bacteria. Carbohydrate degradation has been studied extensively for terrestrial plant/bacterial systems, but sulfation is not present in these cases, meaning the marine enzymes used to degrade carrageenans must possess unique features to recognize these modifications. To gain insights into these features, we have focused on κ-carrageenases from two distant bacterial phyla, which belong to glycoside hydrolase family 16 and cleave the ß-1,4 linkage of κ-carrageenan. We have solved the crystal structure of the catalytic module of ZgCgkA from Zobellia galactanivorans at 1.66 Å resolution and compared it with the only other structure available, that of PcCgkA from Pseudoalteromonas carrageenovora 9T (ATCC 43555T). We also describe the first substrate complex in the inactivated mutant form of PcCgkA at 1.7 Å resolution. The structural and biochemical comparison of these enzymes suggests key determinants that underlie the functional properties of this subfamily. In particular, we identified several arginine residues that interact with the polyanionic substrate, and confirmed the functional relevance of these amino acids using a targeted mutagenesis strategy. These results give new insight into the diversity of the κ-carrageenase subfamily. The phylogenetic analyses show the presence of several distinct clades of enzymes that relate to differences in modes of action or subtle differences within the same substrate specificity, matching the hybrid character of the κ-carrageenan polymer.


Assuntos
Metabolismo dos Carboidratos , Flavobacteriaceae/enzimologia , Glicosídeo Hidrolases/metabolismo , Biologia Marinha , Pseudoalteromonas/enzimologia , Catálise , Cristalografia por Raios X , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/classificação , Cinética , Filogenia , Conformação Proteica , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...